Beam tracking with LYCCA, Si performance

U4 FAIR

IUnd

Jork
cologne

Calorimeter

LYCCA: Detection principle

ToF- $\Delta \mathrm{E}-\mathrm{E}$ telescope for PreSpec @ FRS / HiSpec @ NUSTAR/FAIR

Main objective: event-by-event identification:

- position \rightarrow tracking
- $\Delta \mathrm{E}$ \& TKE $\quad \rightarrow$ charge Z
- ToF \& TKE $\quad \rightarrow$ mass A
of fragmentation products after secondary target for particle energies $80-200 \mathrm{MeV} / \mathrm{u}$

On October 14th 2008 the LYCCA TDR was approved by the FAIR scientific council based on the recommendation of the Head of Research of the FAIR Joint Core Team. It thus marks the first experiment related TDR of NuSTAR having received green light for construction.

LYCCA: Detection principle

LYCCA: Detectors

ToF detectors:
2 plastic Scintillators

Target Station:

- DSSSD
- Diamond

$\Delta \mathrm{E}-\mathrm{E}$ telescope: DSSSD + 9 CsI

Lund University,
Pavel Golubev

LYCCA: $\triangle \mathrm{E}-\mathrm{E}$ Telescope

Lund University,
Pavel Golubev

Silicon Detectors (LYCCA)

LYCCA $300 \mu \mathrm{~m}$ DSSSD

- Produced at RADCON Ltd., Zelenograd, Russia
- 1.4-1.6 k€/DSSSD
- Bonded to custom made frames at Lund
- 32×32 strips
- Nominal resistivity: 4.3 - $\mathbf{1 0} \mathrm{k} \Omega \mathbf{c m}$
- Wafer: N <100>
- Technology: Ion implanted, tot. Deplited, Multiguard
- Dead layers: junction/ohmic $-0.5 \div 1.0 / 1.85 \mu \mathrm{~m}$
- Active area size: $58.5 \mathrm{~mm} \times 58.5 \mathrm{~mm}$
- Chip size: $58.0 \times 58.0 \mathrm{~mm}$
- Inter strip distance: $75 \mu \mathrm{~m}$
- Capacity: $33.12 \mathrm{pF} /$ strip +
- Full depletion: $\sim 50 \mathrm{~V}$
- Leakage current: 5-10 nA/strip
- Energy resolution: alpha $5.485 \mathrm{MeV}, 25 \mathrm{keV} /$ strip

Photodiodes: CsI(TI) readout

LYCCA Photodides

- Produced at RADCON Ltd., Zelenograd, Russia
- Doubleside thermobonding, Au wires
- Precision Ceramics Ltd.: frames
- PD mounting in Lund
- $\mathrm{CsI}(\mathrm{TI}) / \mathrm{PD}$ assembling and testing in Lund
- Nominal resistivity: 6-7.5 k $\Omega \mathrm{cm}$
- Wafer: N <100>
- Technology: Ion implanted, tot. Deplited, Multi-guard
- Dead layers: junction/ohmic - 0.06/0.6 $\mu \mathrm{m}$
- Spectral response range 320-1060 nm
- Peak sensitivity: 920 nm
- Quantum efficiency (for 560 nm) ~82-86\%
- Active area size: $10.6 \mathrm{~mm} \times 11.6 \mathrm{~mm}$
- Chip size: $12.4 \times 13.4 \mathrm{~mm}$
- Full depletion: ~50V
- Leakage current: 1-2 nA
- Capacitance (full deplition): 38-40 pF

Acceptance tests: DSSSD

Test chamber

FWHM: 41 keV @ 5484 keV $\sim 0,75 \%\left({ }^{(241} \mathrm{Am}\right)$

NUSTAR week:
17-21 October 2011, Bucharest

Lund University,
Pavel Golubev

Electronics

32ch - CSP

Charge Sensitive Preamplifier Series CSP_07

Specification

Dynamic Range: $\quad 5 \mathrm{GeV}$ equivalent Si detectors CSP_07(5 GeV) 200 MeV equivalent Si detectors CSP_07(200MeV)

Number of Channels: 32
Noise: $\sim 3.5 \mathrm{keV}(\mathrm{Si})+0.05 \mathrm{keV} / \mathrm{pF}$ (detector capacity)
Sensitivity: $\sim 50 \mathrm{mV}(+/-20 \%) / 200 \mathrm{MeV}$ differential, terminated * (5 GeV vers.)
$\sim 50 \mathrm{mV}(+/-20 \%) / 5 \mathrm{MeV}$ differential, terminated * (200 MeV vers.)
\sim Range switch: $\mathrm{x} 1, \mathrm{x} 3$ *(optionally x1; x4 or x5 ..)

- AIDA FEE readout card for LYCCA DSSSD readout (I. Lazarus)
- FEBEX Sampling ADC (N.Kutz)

LYCCA: fast timing (plastic)

Ni-beam results:
$\sigma=14.4 \mathrm{ps}$ (without pos. cor.)
$\sigma=12.2 \mathrm{ps}$ (with pos. cor.)
Intrinsic resolution across whole area

- 32 fast PMTs (R7400U) - Fast plastic scintillator (BC-420)

Xe-beam results:
$\sigma=11.6 \mathrm{ps}$ (without pos. cor.)
$\sigma=6.4 \mathrm{ps}$ (with pos. cor.)
Intrinsic resolution across whole area

Lund University, Pavel Golubev

LYCCA-0 mechanics

LYCCA chamber:

- up to 72 KEL-Feethroughs
- 32 SHV+Lemo-FT

(Chamber @ X7)

(Chamber @ S4)

NUSTAR week:
17-21 October 2011, Bucharest

Lund University,
Pavel Golubev

LYCCA commissioning and experiments

Mar 2010
Sept./Oct 2010

2012/13

Test
@ S272
I.Tanihata et al.

Experiments:

- ${ }^{88} \mathrm{Kr}(10 / 2010) \mathrm{S} 369$

Jolie et al.
-104Sn (11/2010) S392
Cederkall, Gorska et al.

- ${ }^{36}$ Ar (05/2011) S377

Reiter et al.

LYCCA first experiments

NUSTAR week:
17-21 October 2011, Bucharest

Lund University,
Pavel Golubev

LYCCA Hitpattern

LYCCA Si Wall

Target DSSSD

Lund University, Pavel Golubev

LYCCA: DSSSD energy resolution

- In-beam: ${ }^{36} \mathrm{Ar}$, primary beam, FRS ID
- energy loss $117,8 \mathrm{MeV}$
- $\left\langle R_{\text {Si } _\mathrm{p}}\right\rangle=2.25 \pm 0.18 \%$
- $\left\langle\mathrm{R}_{\text {Si_n }}\right\rangle=2.10 \pm 0.21 \%$
- beam energy spread -> cut on $\Delta \beta_{\text {LYCCA }}$

LYCCA: CsI/PD energy resolution

- In-beam: ${ }^{36} \mathrm{Ar}$, primary beam, FRS ID
- energy deposition 4.151 GeV
- $\left\langle\mathrm{R}_{\mathrm{Cs} \mid}\right\rangle=1.84 \pm 0.37 \%$
- beam energy spread -> cut on $\Delta \beta_{\text {LYCCA }}$

LYCCA: Tracking accuracy

Tracking: angular change ${ }^{84} \mathrm{Kr}$

Particle - γ corr. trigger

Particle trigger

LYCCA: Z Identification

84 Kr fission beam, S369 exp. data

- $\Delta \mathrm{E}$ vs $\Delta \beta_{\mathrm{LYCCA}}$
counts

- momentum corrected $\Delta \mathrm{E} \rightarrow \mathrm{E}_{\text {raw }}$
- Calibration of $\mathrm{E}_{\text {raw }} \rightarrow \mathrm{Z}_{\text {cal }}$
counts

$\Delta Z=0.55 \pm 0.07$ for $33 \leq Z \leq 36$

NUSTAR week:
17-21 October 2011, Bucharest

Lund University, Pavel Golubev

LYCCA: A Identification

84Kr fission beam, S369 exp. data
counts

FRS gate: $Z=35$

NUSTAR week:
17-21 October 2011, Bucharest

Lund University, Pavel Golubev

LYCCA:

- LYCCA calorimeter array was successfully put into operation @FRS-S4 focal plane
- In beam commissioning
- First three PRESPEC experimens used LYCCA for particle ID after secondary TA
- LYCCA meets its specs, integrated into PRESPEC setup
- LYCCA capabilities of tracking, Z and A ID after secondary TA
- TA DSSSD tracking is cross-checked against TPCs
- Doppler correction
- LYCCA will be essential part of the upcoming AGATA @GSI experiments
- 30 modules production for FAIR

