

Super-FRS layout

Super-FRS layout

Tracking requirements (Βρ reconstruction)

Momentum resolution (1st order)

D ~ 6 cm/%,
$$\Delta x < 1$$
mm $\rightarrow \Delta p/p \sim 10^{-4}$

$$B\rho = B\rho_0 \left(1 - \frac{x_{FHF1} - M x_{FMF2}}{D}\right) + \Delta(B\rho)$$

(Bρ) includes corrections for additional momentum spread ^{2nd} GEM-TPC dditional matter and reaction

Time Projection Chamber (TPC)

FRS TPC: R. Janik et al., NIM A 640 (2011) 54

Twin Gas Electron Multiplication (GEM)-TPC

Super-FRS GEM-TPC: F. García et al., NIM A 884 (2018) 18

1st GEM-TPC

Electric Field

Entrace Windows

Angular straggling for U ions

The use of thin & low Z windows to minimize angular spread

F-DS-BD-71e_SFRS_Tracking Detector_v2.0

Pressure test

pressure in [mbar]

Ti foil after test at 1.5 bar

*simulated elliptical shape

Vacuum window

A different test commissioned to the PINK GmbH Vakuumtechnik for frame (Ti), support frame (Ti) and foil (Ti, about 200x100 mm²) made of one material failed because the foil became fragile during the heating process.

 According to in-house experts the right procedure to weld a Ti foil on a Ti frame, is the e-beam technique. A rounded or elliptical shape of the foil should be preferred.

3D model (CDR) MUSIC drive and pocket at FMF1 by J. Tuunanen (JYFL Jyväskylä)

(Twin) GEM-TPC design

The GEM-TPC Layout and Powering scheme

Horizontal plane (X-axis) → position by the Strip plane

GMX-NYXOR cards designed by GSI-EEL

strip area: 30x0.25 mm²

Test results

- correlation between top and bottom anode signals
- clusters size: 15-20 strips (= 6-8 mm), too small pitch → redesign of the strip plane

- σ_{C.S.} ≈15 ns (at low rate) → value not fully in agreement with simulations,
 <3 ns measured for <u>Twin TPC</u>
- GEM operated at gain ≈ 1 for Z>50.

Dynamic range

Deposited charge in P10 gas volume 400x80x30 mm³

CSA characterisation

Noise :	0.3 fC
Max. input range:	22 pC
Rise time (10-90):	18 ns
Dynamic range:	> 5 × 10 ⁴
Gain for Co	3 mV/fC
Supply voltage:	1.8 V
Current per ASIC:	16 mA
Output voltage swing:	0.8 V
CSA with active reset	without shaping

- 4chs /chip designed by *P. Wieczorek* (EEL ASIC group)
- pre-amplification stage of the beam profile readout (POLAND)
- planned to be extended to 32 chs for HIT detection

Gain linearity

Test with source (July 2019)

 coupled to GEM-TPC pad plane, 8 strips readout by FEBEX, measured 60 keV gamma (²⁴¹Am), output voltage ~ 20mV

charge collected at the bottom of the 3rd GEM foil and measured in coincidence.

Test with ²⁴¹Am

8 CSA signals (=8 strips equipped), 30 μs integration time (reset signal)

• FEBEX3b: 14 bit, 50 MS/s , timing: 20 ns, input range: ± 1 V

Uncalibrated energy spectra

- 8 CSA signals (=8 strips equipped)
- FEBEX3b: 14 bit, 50 MS/s, timing: 20 ns, input range: ± 1 V

CSA GEM board

 In Summer 2019 it was agreed with PANDA coll. and EEL to go for production of some boards to be coupled to GEM-TPC pad plane.

 In-beam test with single-, 2- and 4-ch readout was planned during the engineering run FRS-EP-025.01.

Engineering run set up

FRS-S4

- FRS-S4 TPCs and SCI in front were included into the same MBS DAQ.
- Two scintillating fiber detector prototypes mounted behind and also tested.

Preliminary results

Fired strips

Charge range: 50 – 200 pC (gain 50 -200)

Summary of the measurements

- One board ready two days before the experiment, tested in the lab and mounted on the detector.
- Test with source performed, detector mounted 12 hours before the start of the run.
- In-beam test:
 - change of the electric field value at fixed GEM gain
 - change of GEM gain at fixed electric field
 - change of the CSA gain at fixed GEM gain
 - S4-TPC calibrations and position reconstruction
 - position resolution at different gains
 - horizontal and (small) vertical scan of the chamber.

Acknowledgment

T. Blatz, C. Caesar, D. Chokheli, F. García, T. Grahn, C. Karagiannis, N. Kurz, S. Löchner, M. Luoma, S. Pietri, M.-M. Schmidt, B. Voss, H. Weick, P. Wieczorek and the FRS team

FRS Twin TPC

Built at CUBratislava

200x70x30 mm³

Delay line, multi-hit TDC (V1290) readout

A. Prochazka et al., GSI Scientific Report (2014)

Time resolution

