

Position-sensitive diamond detector prototype for the Super-FRS

Chiara Nociforo

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt - Germany

NUSTAR Tracking detectors working group meeting - 3 March 2015 - GSI

- Particle identification (PID)
 - requirements & developments needed for the Super-FRS
 ToF detectors

Progress on the Super-FRS diamond project

- results of 2014 experiments

direct comparison ToF diamond VS standard FRS

- future experiments

PID at the Super-FRS

Increasing intensity of radioactive beams requires detecting system with high-rate capability and remote handling/control

Clean full PID on event-by-event basis

- \rightarrow momentum tagging $\Delta x \sim 1$ mm
- \rightarrow ToF measurements Δ ToF \sim 100ps (FWHM) \land \land \approx 200

Nowadays, tracking detectors reach resolution of some tens of mm, thus the velocity resolution at the separator is limited by the performance of the time measurement.

C. Nociforo, 2014 *JINST* 9 C01022

C. Nociforo, NUSTAR Annual Meeting – 5-7 March 2014

Isotope identification

Layout of the Super-FRS beam line

ToF requirements

Radiation-hard solid state detector (e.g. diamond, silicon)

- 4 units working in vacuum
- active area 380/200mm x 50mm
- max rate 500 Hz/mm²

Multi-channel fast readout board (NINO, PADI, ...)

Diamond time properties

pcCVD -DD 10x10x0.2 1 mm³

- digital waveform sampled (20 GS/s)
- small charge collection (Q=2.46pC)

GSI-DL

GSI-FRS

C. Nociforo, IPRD13 7 - 10 October 2013 Siena, Italy

Irradiation test in Dubna

Performed at ACCULINNA separator with 40.5 MeV/u Ar beam, detectors operated in vacuum.

Diamond (Q)

- new sample (E6) pcCVD-DD(20x20x0.3) mm³ with 4 Al contacts
- $\Delta E \sim 20-600$ MeV (DBA amp, V_{in} < 50 mV)

- 10¹¹ ions/cm² (at least a factor 10³ more to see any effect)
- no change in the leakage current observed during the irradiation
- ToF resolution 80ps (σ) with pcCVD-DD (10x10x0.6) mm³ measured by VFTX .

Detector processing:

- electrode metallization with Cr/Au with thickness 50/100 nm made in-house
- photolithography by laser followed by etching made in-house
- 8 strips (1 mm) + 16 strips (0.5 mm) gap 60 μm
- annealing of the device at 500° in Ar
- 1 year R&D

Electronics with ToT capability

PADI ASIC 0.18 μm CMOS

- rise time < 500 ps
- 30 fC <Q< 2000 fC
- σ < 15 ps
- LVDS digital outputs
- 350 MHz bandwidth

M. Ciobanu et al., IEEE Transactions on Nuclear Science, vol.58, no. 4, pp. 2073-2083, Aug. 2011

VFTX (28 chs) VME FPGA TDC

- LVDS inputs
- 200 MHz clock (external & internal)
- σ < 10 ps

GSI-DL GSI-EE

(https://www.gsi.de/fileadmin/EE/Module/Dokumente/vftx1_8.pdf)

C. Nociforo, NUSTAR Annual Meeting – 5-7 March 2014

ToF tests at FRS

Comparison of ToF (Dia S2-S4) with the standard ToF (SCI21-41) with 1GeV/u ¹⁹⁷Au primary beam.

<u>Layout</u>

16 vertical strips: (1x18)mm² each (0.15 mm gap), C = 4.3 pF/strip

Board

PADI7 gain~250, LVDS digital outputs, ToT capability

Measured PADI/VFTX time resolution $\sigma_i = 15 \text{ ps.}$

S4 diamonds

Detector characterization

¹⁹⁷Au @900MeV/u

Threshold dependence

Bias dependence

Threshold vs Resolution [Strip 7 front vs Strip 10 back]

Beam spot size

¹⁹⁷Au@900MeV/u

S4- Count vs Strip [INVERTED]

Diamond data correlated to FRS detectors

13 10

Strip

DIAMOND vs TPC(y) [S4]

Diamond ToF (no corr)

 $\sigma_{\text{intr}} = \sigma_{\text{ToF}} / \sqrt{2} = \sqrt{((\sigma_{\text{start}}^2 + \sigma_{\text{stop}}^2))/2)}$

Diamond rate dependence

Diamond ToF S2-S4 (no corr)

Synchronization made by 200 MHz clock distributed over 40 m.

Diamond rate dependence

Diamond ToF distribution (pos corr)

Cut: [S4: 0.4<x<1.0 , -1.0<y<1.0], [S2: 5.9<x<6.4 , -4.0<y<-3.0] (mm)

Standard ToF distribution

ToF = 0.5 * [(SCI41L-SCI21L)+(SCI41R-SCI21R)]

σ_{intr} contribution

Scintillator	σ (ps)	±∆σ (ps)
SCI41L (S4)	35.3	0.8
SCI41L (S4)	50.7	1.3
	Scintillator SCI41L (S4) SCI41L (S4)	Scintillatorσ (ps)SCI41L (S4)35.3 50.7

Being everything connected to the same crate, electronic noise (15 ps for 32 ch VFTX) is the same for both diamond sensors.

The back diamond strip detector shows worse performances, later moved to S2.

Comparison ToF DIA vs SCI

	Distance (m)	σ _{τοF} (ps)	Note	
DIA (S4)*	-	≈40	strip-strip time difference	
SCI	-	18	L-R time difference	
DIA (S4)-DIA (S2)*	34	≈50	strip-strip time difference	
SCI	34	36	gated on strip position	
DIA (S4)-DIA (S2)*	34	≈45 **	after x,y cut by TPC	
SCI	34	30	after x,y cut by TPC	
* One detector shows better performances				

* Time resolution can be improved with ToT correction

Todo

- recovery of interstrip events and multiple hits (in progress)
- presence of background due to the electronics (not well understood)

A/q reconstruction (in progress)

ToT corrections

The presence of multiple ToT peaks did not allow to perform a correlation between rise and trailing time.

ToT allows corrections for the energy deposited and may lead to marked improvements on σ_{ToF}

Diamond test in HADES cave

Same strip diamonds tested few weeks later during CBM detector test with 1.1 GeV/u Sm beam

- Front detector rotated by 90° (position cut 1mm²)
- Signals read out (CBM DAQ) with two different FPGA TDCs and optical data transfer
- Preliminary measured time resolution ~ 25 ps (σ), confirmation of the FRS results.

Future experiments

Test of new PADI board at CERN

- new chip PADI7D (distance reduced)
- 8 channels
- new threshold control

Irradiation test at LNS-INFN with ¹²C @62 MeV/u

Series of irradiation at intensity 2x10⁸ ¹²C/mm² s followed by data taking at low rate to monitor the CCE and the time resolution of the diamond material <u>Goal</u>: 7.9x10⁷ Gy total absorbed dose

Integrated beam current measured by IC built at GSI-DL.

- Solid state radiation hard material represents a real possibility to obtain a clean PID at the Super-FRS, especially of the fission fragments
- Strip diamond detectors can be successfully processed in house
- Results of in beam tests performed with diamonds in condition similar to that of the Super-FRS show that a ToF resolution below 100 ps (FWHM) is achievable

Outlooks: new electronics and sensors have being prepared in view of 2015 beam time.

M. Ciobanu^{1,2}, J. Fruehauf¹, M. Kiš¹, M. Träger¹, R. Visinka¹, K. Behr¹,
A. Brünle¹, I. Dillmann¹, C. Karagiannis¹, A. Kratz¹, N. Kurz¹, M. Marta¹,
B. Prockazka¹, S. Pietri¹, S. Perushotman¹, F. Schirru¹, B. Szczepanczyk¹

¹GSI, Darmstadt, German ²ISS, Bucharest, Romania

I-V characteristics

Sample 2340622-13 by Element Six (UK)

C. Nociforo, NUSTAR Annual Meeting – 5-7 March 2014