

Implementation of Silicon Detector Arrays in the UHV Environment of Storage Rings

Branislav STREICHER

for the EXL collaboration

8th International Conference on Nuclear Physics at Storage Rings - STORI'11

9 - 14 October 2011, Laboratori Nazionali di Frascati

Part 1 Motivation & Physics Background

EXL* Project @ FAIR

Advantages:

- → High intensities in the ring
- → Little energy loss in the target
- → No target window (no background)
- → High beam resolution (cooling)

Challenges:

- → Very small recoil energies for small q
- → Thin targets
- → Ultra high vacuum (UHV)

*EXL = EXotic nuclei studied in Light ion induced reactions at the NESR storage ring

EXL* Project @ FAIR

EXL Project @ NESR*:

→ Reactions with radioactive beams in inverse kinematics

→ Recoil detector **ESPA** (EXL's Silicon Particle **A**rray)

→ Hundreds of DSSDs planned

→ Placement in storage ring environment

ESPA Development:

Construction of DSSD prototypes at GSI from chips manufactured at PTI St. Petersburg

ESPA

- Performance tests using α-sources at GSI, Edinburgh
- EXL telescope demonstrator tests at GSI, KVI
- → PSD experiment at TU München
- UHV vacuum prototype tests

* downscaled version planned @ ESR

EXL's Detector Requirements

Detection of light particles (p, d, t, α):

- transmission detectors
- → good energy resolution
- → low detection threshold (< 100 keV)
- → high dynamic range (100 keV 25 MeV)

Telescopes of DSSD – Si(Li) – Csl

- → total energy reconstruction
- → distinguish between low-energy vs. passing-through particles
- → separation of different reaction channels

Ultra High Vacuum (UHV) compatibility:

- → low outgassing materials PCB, connectors, electronics etc.
- → reasonable pumping-baking times after ESPA installation in ESR/NESR

Telescope setup

Part 2

Windowless Telescope @ the UHV of the Storage Ring

Using DSSDs as High-Vacuum Barrier

→ Differential pumping proposed to separate NESR vacuum from EXL instrumentation (cabling, FEE, other detectors)

Vacuum Barrier Demonstrator

Mechanical Requirements and Separation Principle

- → PCB with one "clean" side no connectors, soldering etc.
 - connections from one side of DSSD must be driven on the other side
- → Bakeability up to at least 200°C
 - restricted choice of materials
 - matched thermal expansion coefficients
- → PCB should be easily replaceable from the frame

Part 3 Differential Vacuum Demonstrator Construction

Mechanical Construction

- → Aluminum wire used as a vacuum seal
 - welded wire
- → Base frame machined from CF150 flange
 - holds Al wire on top of which PCB is placed
 - has α-source holder
- → Top frame from stainless steal
 - has groove that fixes top Al wire
 - has mounts for connectors

Ceramic PCB and Connectors

- → PCB designed to have "through-board" contacts
 - laser drilled holes for routing P-side contacts to N-side
 - holes hermetically sealed with glass layer
- → Manufactured from Aluminum Nitride (AIN)
 - ultra low-outgassing + bakeable to > 200°C
 - expansion coefficient close to Silicon
 - high thermal conductivity

→ DSSD glued with EPO-TEK®H77S low-outgassing

glue

- → Spring pins of 0.52 mm diameter used
- → Kapton coated bakeable cables used

Test Stand @ GSI

- → Two vacuum volumes separated by DSSD-PCB barrier
- → Each volume equipped with a vacuum meter
- → UHV side Residual Gas Analyzer
- → Needle valve on AV side to introduce artificial air leak

UHV part Low vacuum part

Part 4

Differential Vacuum Demonstrator Results

B. Streicher et al., Nucl. Instrum. Methods Phys. Res. A 654 (2011) 604-607

Differential Vacuum Tests

- Low rate of outgassing and residual gas spectra clear of contaminants for glued DSSD
- → DSSD as a vacuum barrier could hold 6 orders of magnitude difference between low and UH vacuum in wide pressure region

1.2x10⁻¹⁰ mbar for UHV – limit of the test stand

Spectroscopic Performance

- → Does the bake-out cycle influences DSSD chip performance?
- → Basic functionality test done by measuring 16 x 16 channels (4 channels coupled together on PCB) for P-side injection

No noticeable influence

- → Energy
- → Time

²⁴¹Am alpha spectrum

Part 5 Improvements, Current Development & Future Perspectives

Mechanical Stability Improvement

Test of UHV vacuum vs. press force range

- → New Helicoflex® Delta rings flat shape, small contact area with the PCB
- → Reduction of shear stress on the PCB
 - Industry standart 30 200 N/mm
- → All mechanics from the UHV side screws, cup washers – required for final ESR design

64x64 DSSD

- Improved PCB layout
 - polished surface
 - rounded corners
 - 32 x 32 readout

Further Prototyping (32x32 DSSD)

- New 300 I/s turbo pump
- New Titanium sublimation pump
- → Tests are currently running at GSI

Further Prototyping (128x64 DSSD)

- → New 128x64 strip DSSD (64x66 mm²) constructed for the approved experimental proposal E105 @ ESR, GSI
- → Full spectroscopic test performed @ GSI

P-side injection ¹⁴⁸Gd source

Further Prototyping (128x64 DSSD)

- → Vacuum tests by the end of 2011
 - First using "dummy" DSSD
 - With real DSSD
- → Resulting in the manufacture of the detector "pocket head"

Assembly of the EXL's ESR Chamber

- → Thermal tests using the real pocket
 - SiLi cooling vs. pcket baking
- → Assembly of a vacuum system
 - Backup system reqquired
- → ASIC development + cabling
 - Interconnecting DSSDs with ASIC
 - Proper signal propagation

Summary

- → Proposed UHV solution for using telescopic detector setup inside the ESR / NESR with an active window - DSSD
- Constructed and tested small UHV prototype using 32x32 DSSD
- → Vacuum of 1.2x10⁻¹⁰ mbar reached for UHV side
- → Difference bigger than 6 orders of magnitude between AV / UHV
- → Air-leak like outgassing spectra clear of contaminants

Perspectives

Improved 32x32 DSSD & 128x64 DSSD UHV solution

- better PCB surface
- better sealing
- changed PCB shape
- → Thermal tests of the SiLi detectors in the ring environment
- → Assembly of the EXL's ESR pocket/s and chamber
 - construction in progress
- → Preparation of the E105 experiment @ ESR (possibly in 2012)
- → Produce TDR for the EXL project @ NESR (possibly ESR) by the end of 2012

List Of Participants

1) GSI Darmstadt

Peter EGELHOF, Stoyanka ILIEVA, Holger KOLLMUS, Gerhard MAY, Manfred MUTTERER, Branislav STREICHER, Michael TRÄGER

2) KVI Groningen

Nasser KALANTAR-NAYESTANAKI, Annelie GLAZENBORG-KLUTTIG, Michel LINDEMULDER, Branislav STREICHER

3) TU Darmstadt

Thorsten KRÖLL, Mirko VON SCHMID

4) PTI St. Petersburg

Vladimir EREMIN

Thank You!

EXL Experiment @ Present ESR - In-ring detectors

- → In-ring detectors for coincidence measurement of beam-like particles before the first dipole
- → 2 detectors: 1 x in UHV, 1 x in auxiliary vacuum

In-ring detectors: UHV detector

- → Six (1x1 cm²) PIN-diodes (300µm thick) on the AIN PCB
- → Bakeable to 250 °C
- → Passed outgassing tests
- → New prototype with improves cabling due till the end of 2011

