

Building software systems for
Xilinx FPGAs

Assumed Hardware

� Virtex-4 FX12 FPGA
 PowerPC 405 Processor
 10/100/1000 Ethernet Port
� 32M x 16 DDR Memory
� RS232 Port
� System ACE Interface and/or JTAG Port
� Compact Flash I/F and/or Flash Memory

Available Hardware

� Xilinx Development Kit ML403 or ML405
� Memec Virtex-4 FX12 Mini-Module
� Your own design! (base it on ML403!!)

Awaiting solutions using Virtex-5 FX

Performance

• Assume use of 300MHz clock for the PPC processor
core

• Assume 64Mbyte DDR

• Compares with MVME2432 VME processor

• Ethernet (using TEMAC) gives real world TCP transfers

at 12 Mbyte/sec with basic options (including DMA). Up
to 32 Mbyte/sec with all options enabled (such as
offloading checksum calculation) have been obtained at
cost of using more FPGA resources.

Software Options

Consider software and firmware as
equivalent

� VHDL with standalone C program in the
PPC core

� VHDL with C code using proprietary OS in
the PPC core

� VHDL with Linux OS in the PPC core

Proprietary OS

� U-Boot
�Universal bootloader - feature overload!!

� Xilinx Kernel
�Multi-threaded C application
�lwIP Library (Light Weight IP)

�supports BSD style sockets API

� Others

Linux

� Linux Version 2.6
� Requires Xilinx EDK 9.1.1

�Supports TEMAC for 1000BaseT

� Boot from platform flash or compact flash
card

� Root filesystem on compact flash card or
network server

Linux device drivers

� opb_uartlite for UART 16550
� plb_temac for 10/100/1000 Mbit ethernet support
� opb_iic for EEPROM access
� opb_sysace for Compact Flash access

� opb_gpio – good example base for “user” drivers

� Other drivers

� plb_uart16550 – requires Xilinx IP core
� plb_ethernet – 10/100 ethernet support
� plb_tft
� opb_ps2

Building Linux System

� Use Xilinx EDK to build hardware
bitstream
� Combines IP cores for required Xilinx specific

devices
� Plus any “user” devices
� Plus “user” VHDL code

� Build the Linux kernel
� Create System ACE file which combines

bitstream file and kernel file => .ace file

Data Acquisition

� Once the Linux OS has been loaded you can then build
and load your acquisition application in much the same
way as when using for example a VME processor board.

� Use “shared” memory (address space) to create a
private “bus” between the PPC core and your VDHL
code.

� You will need a Linux driver which gives access to this
shared address space allowing communication between
your acquisition application and your VHDL code within
the FPGA.

Advantages

• Once the embedded Linux system is operational all
existing code from, for example, VME based applications
can very quickly be ported to the Virtex-4 environment.

• All non hardware specific features of the application will
be available

• This should then immediately give an acquisition
application as reliable as the original VME application.

• Development of the application can use the GNU toolkit
which is likely to be much quicker than any other solution

• All advantages based on Linux developments are likely
to be available

Disadvantages

• You require the Xilinx software which
defines the peripherals (uart and temac) in
order to build the essential bitstream file.

• This may take some time after availability

of hardware.

Example

FREEDAC Building Blocks

• need access to time reference source in
order to time-stamp all data items

• application builds data stream to agreed
format

• application sends time-stamped data items
to event builder/data concentrator using
agreed data transfer protocol

