AGATA Front-end electronics of the central contact

- **1.** Charge Sensitive Preamplifier (Low Noise, Fast, Single & Dual Gain)
- 2. Programmable Spectroscopic Pulser (as a tool for self-calibrating)
- 3. Updated frequency compensations in adverse cryostat wiring and reduced crosstalk in the transmission line

G. Pascovici, A. Pullia, F. Zocca, D. Bazzacco; FREEDAC Meeting, Ljubljana, 28 Mai, 2008

- **1. Charge Sensitive Preamplifier** (Low Noise, Fast, Single & Dual Gain)
- 2. Programmable Spectroscopic Pulser (as a tool for self-calibrating) Front-end electronics with wide dynamic range (~ 100dB) divided in four sub-ranges and two modes of operations:

a) Amplitude and b) TOT (FZ)

AGATA 36_fold segmented, encapsulated HP-Ge Detector

AGATA Triple Cryostat 111 spectroscopic channels

AGATA Demonstrator [5 x TC] (555 spectroscopic channels)

AGATA, the first complete 4pi gamma-ray spectrometer

- **1. Charge Sensitive Preamplifier** (Low Noise, Fast, Single & Dual Gain)
- 2. Programmable Spectroscopic Pulser (as a tool for self-calibrating) Front-end electronics with wide dynamic range (~ 100dB) divided in four sub-ranges and two modes of operations:

a) Amplitude and b) TOT (FZ)

- **1. Charge Sensitive Preamplifier** (Low Noise, Fast, Single & Dual Gain)
- Programmable Spectroscopic Pulser (as a tool for self-calibrating)
 Front-end electronics with wide dynamic range (~ 100dB) divided in four sub-ranges and two modes of operations:
 Amplitude and b) TOT (FZ)

C. Chaplin, Modern Times (1936)

- 3. Updated frequency compensations in adverse cryostat wiring and reduced crosstalk in the transmission line
 - crosstalk between participants:
 - segments, electronic channels

- single dummy & detector , single cryostats, triple-cryostats...

Specs	Prerequisite	
Sensitivity (mV/MeV)	~ 100 mV/MeV (differential output)*	AGATA Core-Pulser
Resolution (Cd= 0pF; cold FET)	~ 600 eV	@ AGATA Week Padova Sept 2002
Slope (+ eV/ pF) [Cd]	< 10 eV / pF (cold FET)	
Rise time *) (Cd= 0pF);	< 12 ns (warm FET)	
Slope (+ ns/ pF) [Cd]	~ 0.25 ns (~ 23 ns / 45 pF)	
U (out) @ [100 Ohm] / Power [mW]	~ 2.0V*/ ~290 mW (i.e. 1V/term. @ FADC)*)
Saturation of the 1st stage @	> 50 MeV (Active reset 2. stage)*	Crosstalk requirements
Open Loop Gain	> 20,000	- less then ~ 0.1% core-segment

Block diagram of the AGATA front end-electronic

AGATA Core Preamplifier - Charge Sensitive Part

AGATA LVDS-Dual Core Preamplifier (Final design) with up-graded frequency compensations:

- Large Open loop-gain (~ 100,000)
- Fast Rise Time tr ~ 15 ns @ 45 pF
 - Large dynamic range
 ~ 180 MeV @ Cf~1pF

 Multiple frequency compensations:

- minimum Miller effect
- lead compensation
- lead-lag compensation
- dominant pole compensation

AGATA Single Core Preamplifier

- 2. stage
- P/Z and Fast Reset
- 3. stage and Differential Driver

AGATA Dual Core Preamplifier

- 2. stage
- P/Z and Fast Reset
- 3. stage and Differential Driver

Fast Reset as tool to implement the "TOT" method

Francesca's talk!

some new X-talk problems...

... if LV-CMOS transmission line

Advantage:

- simple upgrade of the single gain core

Disadvantage:

 relative large crosstalk between digital and analog opposite signal, namely: INH-C1 ⇔ Core_Ch2 INH-C2 ⇔ Core_Ch.1 (sat)

<u>Observed transmission line</u> <u>crosstalk between</u>

INH-Ch1 ⇔ Analog Signal Ch2 on the MDR-LVDS transmission line

- threshold dependent
- difficult to compensate ...

Proposal for LVDS transmission for the INH_Core C1 and Pulser_In Signals

Advantage:

- reduced crosstalk between INH-C1 and Core_Ch2 (from ~10 mV down to ~1mV)
- terminated digital signals INH and Pulser_In ⇔ accurate transmission of INH_C1 (requested by TOT method) with tr;tf ~ 1.5 - 2.5 ns and smaller jitter
 Disadvantage:
 - additional time needed for the PCB rework of both Dual-Gain Core Preamplifier and FADC
 - LVDS transmission line

LVDS transmission for the INH_Core C1 and INH_Core C2

AGATA Dual_Core LVDS transmission of digital INH and Pulser_In signals

AGATA Dual Core crosstalk test measurements Ch2 (analog signal) vs. LVDS-INH-C1 (bellow & above threshold)

(1) Core_Ch1, (2) Core_Ch2, (3) INH_Ch1(LVDS/-/, (4) INH_Ch1(LVDS/+/)

G.Pascovici, Dual_Core IReS Test Box, warm jFET, Feb.23, 2008

AGATA Dual_Core LVDS transmission of digital INH and Pulser_In signals

Property	value	tolerance	
Conversion gain for segments and single core	100 mV / MeV (terminated)	±10 mV	
Conversion gain for dual core	200 mV/ MeV (Ch 1) 50 mV/ MeV (Ch 2)	±20 mV ±5 mV	
Noise	0.6 keV fwhm (0 pF; 150K)		
Noise slope	8 eV / p F	±2 eV	
Rise time	12 ns (0 p F)	±2 ns	
Rise-time slope	~0.2 ns / p F		
Decay time	50 µs	±2 μs	
Integral non linearity	< 0.025% (D=3.5V)		
Output polarity	differential, Z =100W		
Fast reset speed	~10 MeV ∕ µs		
Inhibit output	TTL/CMOS⇔LVDS		
Power supply	±6.5V, ±12.5V	±0.5V	
Power consumption jFET	< 20 mW		
Power consumption (except diff. buffer)	< 280 mW Single Core <500mv Dual Core		
Mechanical dimension	(62 x 45 x 8) mm - Single Core (70 x 45 x 8) mm - Dual Core		

AGATA Dual Core Final specs.

Comments:

- comparison with the tentative AGATA Specs Padova 2002

- Front end electronics was not an issue of the AMB only detector& cryostat R&D.... ©

Block diagram of the AGATA front end-electronic

• Programmable Spectroscopic Pulser

- why is needed? \Rightarrow self-calibration purposes
- brief description ...
- Specs and measurements ...

Potential use of SPP for self-calibrating

Parameter

- Pulse amplitude
- **Pulse Form** (rise time, fall time, structure) (PSA)
- Detector Bulk Capacities (also for Dummy Capacities) characterization)
- **Pulse Form** (PSA)
- **Repetition Rate** (c.p.s.) meas.)

(with periodical or statistical distribution)

- Time alignment $\langle \Rightarrow \rangle$ Correlated time spectra
- Segments calibration points <=> Low energy calibration points

Potential Use / Applications

- *Energy, Calibration, Stability* $\langle \Rightarrow \rangle$
- $\langle \Rightarrow \rangle$ **Transfer Function in time** domain, ringing $\langle \Rightarrow \rangle$
- ⇔ Crosstalk input data (Detector
- **TOT** Method $\langle \Rightarrow \rangle$ \Leftrightarrow
- $\langle \Rightarrow \rangle$ Dead Time (Efficiency

AGATA Dual_Core <u>LVDS</u> transmission of the digital Pulser_In signals

Programmable Pulser (3)

Programmable attenuator 4x 10 dB

Issues:

- Bandwidth (tr) vs. Noise
- Pulser pulse shape vs. gamma
- Pulser return GND ⇔ core noise

Selection Mode of operation

Exponential	Rectangular		
Good DC Level	Same P/Z ⇔ good PSA		
Disadvantage:	Advantage/Disadvantage		
- Different P/Z for Signal & Pulser⇔	Base line OK (good P/Z),		
PSA!	but DC level ~ pulser level		
- Bipolar Signals (+ & -)	(50%)		

Pulser Specs and Measurements

• Dynamic range: - Core 0 to ~ 180 MeV (opt. ~ 90 MeV) - Segments 0 to ~3 MeV (opt. ~ 1 MeV) • Rise Time Range: 20 ns - 60 ns (by default ~45 ns) • Fall Time Range: 100 μ s - 1000 μ s (by default ~150 ns) • Long Term Stability: < $10^{-4}/24$ h

Measurements:

- GSI Single Cryostat (Detector S001)
- Portable 16k channels MCA (IKP)
- **Resolution** (acquisition time 12-14h):
 - core 1.08 Pulser (Detector)
 - cold dummy (V3): 0.850 keV
 - segment Pulser: < 0.90 keV
 - core @ 59.5 keV: 1.10 keV
 - core @ 122.06 keV: 1.15 keV

Pulser Ratio Core /Segments

Ration Core/Segment (Orig)

Core to Segment Capacities

Pulser signal in segments: Inverse proportional to core-segment capacity.

Capacities normalized to total capacity of crystal (46pF cfr. Eurisys)

Structure of Core Resolution in Coincidence with Segments Rings

Ring ⇔						
	1	2	3	4	5	6
Peak Position (1332,) keV	.285 keV	.166 keV	.353 keV	.535 keV	.543 keV	.495 keV
Resolution FWHM (keV)	2.37	2.38	2.27	2.22	2.24	2.34 passivation problems

Nigel Warr, "AGATA core resolution wit gate on segment

Part.3

Transfer Function & X-talk

- Stand alone transfer function (bench tests... 2004++)
- Wiring influence detector wiring & cryostat wiring
 Dummy Detectors (2D⇔V2; 3D⇔V3)
- Solution for frequency compensation to find
 - stability criteria for oscillations,
 - peaking & ringing
 - methods of compensation depending on:
 - op amp type (or equivalent op amp when distributed)
 - feedback, source and load networks
- Updated version of compensation and measurements

TC_Warm with Slow Core and Segment A_S1 with common or separated cold grounding GND_0 + GND_1

Common cold grounding GND_0 (Cryostat Cu_Al) GND_1 (Cold CSPs) Separated cold grounding GND_0 (Cryostat Cu_Al) GND_1 (Cold CSPs) (end cup opened)

TC_Warm with Slower Core

Transfer Function Temperature dependents

TC_Cold with Faster Core

(*Core warm* ~ 32 *ns*, *cold* ~ 27.5*ns*)

Note: - larger overshoot on segments (influence of the Core 1.stage + return GND core - segm.) - tr core: - warm ~ 32 ns, - cold ~ 27.5ns (same Pulser)

$$i_{i} = i_{i}^{Ramo} - \sum_{j \neq i} C_{i,j} \frac{\partial V_{j}}{\partial t}$$

$$i_{Ramo} = \mathbf{Z}(f < 1 \text{Mhz}) i_{FB} = \begin{pmatrix} 1 + \Delta_{0,0} & \Delta_{0,1} \\ \Delta_{1,0} & 1 + \Delta_{1,1} \end{pmatrix} i_{FB}$$

AGATA Core CSP

AGATA Core Preamplifier - Charge Sensitive Part

AGATA LVDS-Dual Core Preamplifier (Final design) with up-graded frequency compensations:

- Large Open loop-gain (~ 100,000)
- Fast Rise Time tr ~ 15 ns @ 45 pF
- Large dynamic range ~ 180 MeV
- Multiple frequency compensations:
 - minimum Miller effect
 - lead compensation
 - lead-lag compensation
 - dominant pole compensation

AGATA Single and Dual Core frequency compensations

Multiple frequency compensations:

- minimum Miller effect
- lead compensation
- lead-lag compensation
- dominant pole compensation

Comments:

Stability criteria not only oscillations, rather it is circuit performance as exhibited by peaking and ringing
the method of compensation depends on the equivalent op amp type and feedback, source and load networks

Dual Core in 'GP - Cryostat' (cold)

Dual Core in 'GP - Cryostat' (cold)

- cryostat equipped with AGATA cold parts and wiring (only 1.8 Ohm, no 48.5 Ohm!)

Equivalent resolutions (if cold Cf ~1pF)

- Ch1 ~ 1.15 keV @ ~ 150 keV
 Ch2 ~ 1.31 keV @ ~ 150 keV
 (6 μs shaping time Ortec 671 & IKP-MCA)
- rise time ~ 26 -29 ns (+/- 2ns ⇔ 10mV-1V)
- no overshoots & undershoots
- NB: flat top of ~ 500 ns (PSA ⇔ peaking)

Outlook

- A very low noise, very wide dynamic range charge-sensitive pre-amplifier has been developed and tested to be used with a highly segmented and encapsulated HP-Ge AGATA Detector
- Furthermore its wide spectroscopic range has been successfully extended by more than one order of magnitude, by switching (below the maximum of the ADC range) from the standard amplitude spectroscopic method to the new TOT technique (two modes of operations ⇔ four sub-ranges)
- A very clean transfer function at very high counting rates and adverse cryostat wiring (...useful set of Dummy - "detectors")
- An accurate Programmable Spectroscopic Pulser has been developed and implemented in the AGATA front-end electronics

Outlook

- A very low noise, very wide dynamic range charge-sensitive pre-amplifier has been developed and tested to be used with a highly segmented and encapsulated HP-Ge AGATA Detector
- Furthermore its wide spectroscopic range has been successfully extended by more than one order of magnitude, by switching (below the maximum of the ADC range) from the standard amplitude spectroscopic method to the new TOT technique (two modes of operations <> four sub-ranges)
- A very clean transfer function at very high counting rates and adverse cryostat wiring (...useful set of Dummy - "detectors")
- An accurate Programmable Spectroscopic Pulser has been developed and implemented in the AGATA front-end electronics

Outlook

- A very low noise, very wide dynamic range charge-sensitive pre-amplifier has been developed and tested to be used with a highly segmented and encapsulated HP-Ge AGATA Detector
- Furthermore its wide spectroscopic range has been successfully extended by more than one order of magnitude, by switching (below the maximum of the ADC range) from the standard amplitude spectroscopic method to the new TOT technique (two modes of operations ⇔ four sub-ranges)
- A very clean transfer function at very high counting rates and adverse cryostat wiring (...useful set of Dummy - "detectors")
- An accurate Programmable Spectroscopic Pulser has been developed and implemented in the AGATA front-end electronics

