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What do we need the trigger for?
common points of possible applications 

• master project: online detection system for monitoring gamma-
emitting radionuclides suspended in municipal water pipes

→ one task: simplified optimal trigger algorithm

→ connect to DAQ & controls of new generation of nuclear 
physics user facilities: self-triggering of free-running ADCs

• COMMON POINTS & GOALS:

→ digital front end

→ huge number of experimental channels

→ interaction via controls

→ capable of self-calibration



What are the real-time requirements ?
Task description

• runs entirely in the fast process: FPGA

• capable of following a slowly fluctuating baseline

• reports current baseline value to the calorimetry function

• follows noise level of baseline (variance σ2)

• higher single-point signal-to-noise ratio

• trigger level expressed in standard deviations of the baseline 
fluctuation

• immune to baseline pulling by the occurrence of a pulse



Construction of an optimal trigger

• OPTIMAL filter: estimate of desired variable from imprecise measurements in 
such a way that error is minimized statistically

• measurement 1 of constant x: x1 with variance σ1
2

• measurement 2 of constant x: x2 with variance σ2
2

→ estimate constant x: x = σ2
2/[σ1

2 + σ2
2] x1 + σ1

2/[σ1
2 +σ2

2] x2

→ weighted average

→ estimate of variance of x: σ
x

-2 = σ1
-2  + σ2

-2

• system dynamics: variable propagation by “best” knowledge of system dynamics

Kalman filter
observed signal

optimal estimate 

of signal parameters

An approach



Working Principle of Our Trigger
How is our baseline follower set up?

• dynamics: → pulse P time scale = pulse width W

→ baseline B time scale > W

→ baseline noise σ2 time scale >> W (~ constant)
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→ TRIGGER condition: σi
2 > k2 * σ2
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What are the control requirements ?

BIG

5 W

0.5 W

initialized to

R & Wbaseline variance 

estimate

“VERY long” 

(>> pulse width) 

constant τ3

R & Wbaseline dynamics“long” 

(> pulse width)

constant τ2

R & Wimproves S/N

BUT: introduces 

additional latency

“short” 

(< pulse width) 

constant τ1

communicationdescription“reasonable” valueparameter

• parameters are communicated via the slow process to/ from the controls:

→ R = read

→W = write

→ A = alarm



System Learning
Interaction of the fast & the slow process

ADC

FPGA

“fast process” 

CPU

“slow process”

• “slow process” extracts information about pulse shape
→ could send measured pulse width to “fast process” & set τ1 and τ2 accordingly

→ system learns



Further control requirements

Wrestart the filterR 

(optional)

R & Wtime interval of 

triggering

TR ∆time 

(optional)

R & Atriggers over last ∆time TR 

(optional)

R & Wtrigger level: expressed 

in units of NL 

→ kσ-triggering

TL

R & Anoise level

→ standard deviation of 

“pulse-less” signal 

(without baseline 

fluctuation)

NL

communicationdescriptionparameter



→ harmonic baseline dynamics, spikes, two “physics” pulses

→ baseline follower

→ discrete digitizer output

An Example



An Example

→ zoomed in on “physics” pulses

→ bimodal filter



An Example

→ significance level of deviation from baseline

→ k*σ-triggering



FALSE Triggers

• false trigger rate due to random fluctuation

• reduction of false triggers due to “grouping 

together” of false triggers

→ neighbouring points are correlated

→ false triggers clump together

→ effectively reduces number of false triggers

• EXAMPLE: 

→ 108 experimental data points 

→ NaI crystal 

→ MC simulation: 134 990 expected false triggers per second for 3σ-triggering

→ quick sample calculation: 147 800 false triggers clumped together in 79 700 “groups” 

→ reduction of false trigger by ~ factor of 2
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Conclusions

VERY INTERESTING trigger for various physics applications

Bimodal Kalman filter for digital triggering:

• simplified optimal recursive baseline follower

• runs entirely in the fast process

• capable of following & reporting a dynamical baseline

• follows noise level of baseline 

• higher single-point signal-to-noise ratio 

• monitors “current value” of variance of baseline

• possible to define k*σ –triggering

• successful initial test on TRBv2 board for HADES/ FAIR



Thank you.


