Simplified optimal digital TRIGGER

with guidelines
for experimental controls interaction
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What do we need the trigger for?

common points of possible applications

e master project: online detection system for monitoring gamma-
emitting radionuclides suspended in municipal water pipes

— one task: simplified optimal trigger algorithm

— connect to DAQ & controls of new generation of nuclear
physics user facilities: self-triggering of free-running ADCs

e COMMON POINTS & GOALS:
— digital front end
— huge number of experimental channels
— 1nteraction via controls

— capable of self-calibration



What are the real-time requirements ?

Task description

e runs entirely in the fast process: FPGA

e capable of following a slowly fluctuating baseline

e reports current baseline value to the calorimetry function
e follows noise level of baseline (variance ¢2)

e higher single-point signal-to-noise ratio

e trigger level expressed in standard deviations of the baseline
fluctuation

e 1mmune to baseline pulling by the occurrence of a pulse



Construction of an optimal trigger

observed signal
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Kalman filter

An approach

optimal estimate
of signal parameters
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OPTIMAL filter: estimate of desired variable from imprecise measurements in
such a way that error 1s minimized statistically

measurement 1 of constant x: x, with variance c,?

measurement 2 of constant x: x, with variance c,?

— estimate constant x: X = 6,%/[6,% + 0,%] X; + 6,%/[0,>+G,%] X,
— weighted average

— estimate of variance of x: 6,2=0,2 + 0,

system dynamics: variable propagation by “best” knowledge of system dynamics



Working Principle of Our Trigger

How 1s our baseline follower set up?
e dynamics: — pulse P

— baseline B
— baseline noise o2

time scale = pulse width W
time scale > W
time scale >> W (~ constant)

principle

simplification
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— TRIGGER condition: 62> k? * ¢2




Schematic Representation
of our Trigger

INHIBIT
R S C 9 D D? / + T
" 1/(1 +’C1p) > o 2 / >
/ B
* 1/(1+1,p) S , (TL * 5)*
1 1/(1+t,p)2 «
B TL? UNL.
T, .~
controls M 13
CALORIMETER
INHIBIT controls ‘ TL
INHIBIT
controls

controls



What are the control requirements ?

parameter

initialized to

“reasonable” value

description communication
constant T, 0.5W “short” improves S/N R&W
(< pulse width) BUT: introduces
additional latency
constant T, S5W “long” baseline dynamics R&W
(> pulse width)
constant T, BIG “VERY long” baseline variance R&W
(>> pulse width) estimate

parameters are communicated via the slow process to/ from the controls:
— R =read

— W = write

— A = alarm




System Learning

Interaction of the fast & the slow process

FPGA
—| ADC “fast process”

' 1

“slow process”

» “slow process” extracts information about pulse shape
— could send measured pulse width to “fast process” & set t, and 1, accordingly
— system learns



Further control requirements

parameter description communication
NL noise level R&A
— standard deviation of
“pulse-less” signal
(without baseline
fluctuation)
TL trigger level: expressed R & W
in units of NL
— ko-triggering
TR triggers over last Atime R& A
(optional)
TR Atime time interval of R & W
(optional) triggering
R restart the filter A\

(optional)




ADC output [arb, units]
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An Example
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— harmonic baseline dynamics, spikes, two “physics” pulses

— baseline follower
— discrete digitizer output
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An Example
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— zoomed in on “physics” pulses
— bimodal filter
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— significance level of deviation from baseline

— k*o-triggering



FALSE Triggers

false trigger rate for a 100MSPS system

15408 ¢ =

false trigger rate due to random fluctuation

Ine1

reduction of false triggers due to “grouping
together” of false triggers

— neighbouring points are correlated

— false triggers clump together

— effectively reduces number of false triggers
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false triggers
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EXAMPLE:
— 108 experimental data points
— Nal crystal

— MC simulation: 134 990 expected false triggers per second for 3c-triggering
— quick sample calculation: 147 800 false triggers clumped together in 79 700 “groups”
— reduction of false trigger by ~ factor of 2



Conclusions

Bimodal Kalman filter for digital triggering:

simplified optimal recursive baseline follower

runs entirely in the fast process

capable of following & reporting a dynamical baseline
follows noise level of baseline

higher single-point signal-to-noise ratio

monitors “current value” of variance of baseline

possible to define k*c —triggering

successful initial test on TRBv2 board for HADES/ FAIR

VERY INTERESTING trigger for various physics applications



Thank you.



